79 research outputs found

    Minor loops of the Dahl and LuGre models

    Get PDF
    PreprintHysteresis is a special type of behavior encountered in physical systems: in a hysteretic system, when the input is periodic and varies slowly, the steady-state part of the output-versus-input graph becomes a loop called hysteresis loop. In the presence of perturbed inputs or noise, this hysteresis loop presents small lobes called minor loops that are located inside a larger curve called major loop. The study of minor loops is being increasingly popular since it leads to a quantification of the loss of energy due to the noise. The aim of the present paper is to give an explicit analytic expression of the minor loops of the LuGre and the Dahl models of dynamic dry friction.Preprin

    A robust LMI approach on nonlinear feedback stabilization of continuous state-delay systems with Lipschitzian nonlinearities : experimental validation

    Get PDF
    This paper suggests a novel nonlinear state-fe edback stabilization control law using linear matrix inequalities for a class oftime-delayed nonlinear dynamic systems with Lipschitz nonlinearity conditions. Based on the Lyapunov–Krasovskiistability theory, the asymptotic stabilization criterion is derived in the linear matrix inequality form and the coef¿cients ofthe nonlinear state-feedback controller are determined. Meanwhile, an appropriate criterion to ¿nd the proper feedbackgain matrix F is also provided. The robustness purpose against nonlinear functions and time delays is guaranteed in thisscheme. Moreover , the problem of robust H!performance analysis for a class of nonlinear time-delayed system s withexternal disturbance is studied in this paper. Simulations are presented to demonstrate the pro¿ciency of the offeredtechnique. For this purpos e, an unstable nonlinear numerical system and a rotary inverted pendulum system have beenstudied in the simulation section. Moreover, an experimental study of the practical rotary inverted pendul um system isprovided. These results con¿rm the expected satisfactory performance of the suggested method.Peer ReviewedPostprint (author's final draft

    A recent electronic control circuit to a throttle device

    Get PDF
    The main objective of this paper is to conceive a recent electronic control circuit to the throttle device. The throttle mechanical actuator is the most important part in an automotive gasoline engine. Among the different control strategies recently reported, an easy to implement control scheme is an open research topic in the analog electronic engineering field. Hence, by using the nonlinear dwell switching control theory, an analog electronic control unit is proposed to manipulate an automotive throttle plate. Due to the switching mechanism is commuting between a stable and an unstable controllers, the resultant closed-loop system is enough robust to the control objective This fact is experimentally evidenced. The proposed electronic controller uses operational amplifiers along with an Arduino unit. This unit is just employed to generate the related switching signal that can be replaced by using, for instance, the timer IC555. Thus, this study is a contribution on design and realization of an electronic control circuit to the throttle device.Peer ReviewedPostprint (published version

    Adaptive-smith predictor for controlling an automotive electronic throttle over network

    Get PDF
    The paper presents a control strategy for an automotive electronic throttle, a device used to regulate the power produced by spark-ignition engines. Controlling the electronic throttle body is a difficult task because the throttle accounts strong nonlinearities. The difficulty increases when the control works through communication networks subject to random delay. In this paper, we revisit the Smith-predictor control, and show how to adapt it for controlling the electronic throttle body over a delay-driven network. Experiments were carried out in a laboratory, and the corresponding data indicate the benefits of our approach for applications.Peer ReviewedPostprint (published version

    LMI control design on structural systems with experimental study

    Get PDF
    A nonlinear robust control is developed for active mass damper system subject to external perturbation. This nonlinear controller is composed by the sum of a linear term plus a chattering component. The linear term is designed using linear matrix inequality (LMI) theory. Then, the chattering term is added to improve controller performance. Lyapunov theory is used to validate our control design. According with experiments, where a flexible two levels building with active mass damper and external perturbation is employed, they show that this chattering term improves controller performance. However, when a fault occurs, this chattering term is complaining.Postprint (published version

    Data fusion based on an iterative learning algorithm for fault detection in wind turbine pitch control systems

    Get PDF
    In this article, we propose a recent iterative learning algorithm for sensor data fusion to detect pitch actuator failures in wind turbines. The development of this proposed approach is based on iterative learning control and Lyapunov’s theories. Numerical experiments were carried out to support our main contribution. These experiments consist of using a well-known wind turbine hydraulic pitch actuator model with some common faults, such as high oil content in the air, hydraulic leaks, and pump wear.Peer ReviewedPostprint (published version

    Enhancing vibration control in cable-tip-mass systems using asymmetric peak detector boundary control

    Get PDF
    In this study, a boundary controller based on a peak detector system has been designed to reduce vibrations in the cable–tip–mass system. The control procedure is built upon a recent modification of the controller, incorporating a non-symmetric peak detector mechanism to enhance the robustness of the control design. The crucial element lies in the identification of peaks within the boundary input signal, which are then utilized to formulate the control law. Its mathematical representation relies on just two tunable parameters. Numerical experiments have been conducted to assess the performance of this novel approach, demonstrating superior efficacy compared to the boundary damper control, which has been included for comparative purposes"This work has been funded by the Generalitat de Catalunya through the research projects 2021-SGR-01044."Peer ReviewedPostprint (published version

    Stability of Markov jump systems with quadratic terms and its application to RLC circuits

    Get PDF
    The paper presents results for the second moment stability of continuous-time Markov jump systems with quadratic terms, aiming for engineering applications. Quadratic terms stem from physical constraints in applications, as in electronic circuits based on resistor (R), inductor (L), and capacitor (C). In the paper, an RLC circuit supplied a load driven by jumps produced by a Markov chain—the RLC circuit used sensors that measured the quadratic of electrical currents and voltages. Our result was then used to design a stabilizing controller for the RLC circuit with measurements based on that quadratic terms. The experimental data confirm the usefulness of our approach.Peer ReviewedPostprint (author's final draft

    Analytical scheme of stability analysis for 4-DoF mechanical system subjected to friction-induced vibrations

    Get PDF
    Purpose: The stability problem for non-conservative multi-parameter dynamical system is usually associated with laborintensive calculations, and numerical methods do not always allow one to obtain the desired information. The presence of circulatory forces often leads to the so-called ”destabilization effect” of the system under the influence of small dissipative forces. In this regard, it seems important to develop analytical approaches that make it possible to use a simplified scheme for checking the stability conditions. Methods: When obtaining and analyzing stability conditions, the algebra of polynomials and elements of mathematical analysis are applied. To obtain a simplified scheme for checking the stability conditions, an asymptotic method is used. Results and Conclusion: A mechanical system with four degrees of freedom which is under the action of dissipative, potential and non-conservative potential (circulatory) forces is considered. The stability problem of friction-induced vibrations is studying. In the case of weak damping an analytical approach is proposed that makes it possible to simplify the analysis of stability conditions, which, due to the presence of many uncertain parameters, are very cumbersome. With the help of numerical testing, the adequacy of the results obtained for the reduced conditions and full stability conditions was established. The results of the analysis make it possible to single out the ”advantageous” regions in the space of dimensionless parameters, which makes it possible to improve the design of the system to increase its reliability.Peer ReviewedPostprint (published version

    Decentralised reliable guaranteed cost control of uncertain systems: an LMI design

    Get PDF
    © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The problem of designing a decentralised control scheme for a class of linear large scale interconnected systems with norm-bounded time-varying parameter uncertainties under a class of control failures is addressed. These failures are described by a model that considers possible outages or partial failures in every single actuator of each decentralised controller. The control design is performed through two steps. First, a decentralised reliable guaranteed cost control set is derived and, second, a feasible linear matrix inequalities procedure is presented for the effective construction of the control set. A numerical example illustrates the efficiency of the proposed control schemePeer ReviewedPostprint (published version
    • …
    corecore